シラバス参照

授業情報/Class Information

科目一覧へ戻る 2023/07/20 現在

基本情報/Basic Information

開講科目名
/Class
経営情報処理Ⅱ/Management Information Processing Ⅱ
授業コード
/Class Code
B600221005
開講キャンパス
/Campus
ポートアイランド
開講所属
/Course
経営学部/Business Administration
年度
/Year
2023年度/Academic Year  
開講区分
/Semester
後期/AUTUMN
曜日・時限
/Day, Period
木1(後期)/THU1(AUT.)
単位数
/Credits
2.0
主担当教員
/Main Instructor
齋藤 政彦/SAITO MASAHIKO
科目区分
/Course Group
【専門教育科目】 〈経営情報科学コース選択必修科目〉/*** MAJORS *** 〈経営情報科学コース選択必修科目〉
遠隔授業
/Remote lecture
No

担当教員情報/Instructor Information

教員名
/Instructor
教員所属名
/Affiliation
齋藤 政彦/SAITO MASAHIKO 経営学部/Business Administration
授業の方法
/Class Format
講義、演習
授業の目的
/Class Purpose
企業経営やビジネスに活用される大量の経営情報の中から必要な情報を抽出してデータを解析し活用する能力のニーズは高くなっている。
この講義では、経営統計学で学習した統計学の知識と基礎情報処理実習で学習したコンピュータの操作を活用し、経営企画や経営戦略に必要な情報を収集し、さらに問題をシステム化するのに必要な数理情報の知識・技術を学修し、講義中に実施する演習や課題を通して、レポートや卒業論文作成時に有用な統計データの基本的な解析方法や情報処理の修得を目的とする。
到 達 目 標
/Class Objectives
Excelを使って検定に関する統計処理が行える。
Excelを使って基本的な多変量解析が行える。
授業のキーワード
/Keywords
データ分析、Excel、統計学 
授業の進め方
/Method of Instruction
経営統計学と基礎情報処理実習で学習した内容を基本に講義を進める。
実習を中心として講義を進めるので、なるべく遅刻、欠席しないこと。
このクラスは大学の情報処理実習室のパソコンを使用して統計処理を学ぶクラスなので、特に断りのない限り作成したファイルを保存するためのUSBメモリを持参すること。
課題についてはオンライン(Moodle)上で実施・提出する可能性がある。
履修するにあたって
/Instruction to Students
欠席が授業回数の3分の1を超えると単位を修得できない。また、遅刻が何回か重なると欠席扱いになる。
授業時間外に必要な学修
/Expected Work outside of Class
予習:テキストに目を通しておくこと。必要であれば、統計学のテキストを復習しておくこと。
復習:講義で学修した統計処理、エクセルの操作方法を復習し、内容の理解に努めること。
1時間程度の授業時間外が目安である。
提出課題など
/Quiz,Report,etc
数回の課題を実施予定。
成績評価方法・基準
/Grading Method・Criteria
課題(数回実施予定)100%で評価する。
著しく悪い受講態度には減点措置をとることもありうる。
テキスト
/Required Texts
涌井良幸・涌井貞美著『初歩からしっかり学ぶ実習統計学入門』技術評論社
参考図書
/Reference Books
塩出省吾・今野勤著『経営系学生のための基礎統計学 改訂版』共立出版
縄田和満著『Excelによる統計入門』朝倉書店
末吉正成・末吉美喜著『EXCEL ビジネス統計分析』翔泳社
No.
/Time
主題と位置付け
/Subjects and position in the whole class
学習方法と内容
/Methods and contents
備考
/Notes
1 第1回 ガイダンス 講義の概要、講義の進め方についての説明。
2 第2回 検定1 統計的検定の仕組みと有意水準の意味と検定の基本を理解する。 
3 第3回 検定2 母平均の検定(分散が既知の場合、未知の場合)を理解する。
4 第4回 検定3 母比率の検定を理解する。
5 第5回 検定4 母分散、母比率の差の検定を理解する。
6 第6回 検定5 等分散の検定(F検定)を理解する。
7 第7回 課題 母数に関わる検定の課題を通して理解を深める。 
8 第8回 検定6 独立性の検定(カイ2乗検定)を理解する。
9 第9回 検定7 Excelによるカイ2乗検定の方法について理解する。
10 第10回 課題 独立性の検定に関する課題を通して理解を深める。
11 第11回 回帰分析1 回帰分析について理解する。 
12 第12回 回帰分析2 重回帰分析について理解する。
13 第13回 課題 回帰分析に関する課題を通して理解を深める。
14 第14回 まとめ これまでに学んだ内容を復習し、理解の定着を促す。
15 第15回 課題 これまでの演習内容について、学習到達度を確認する。

科目一覧へ戻る