シラバス参照

授業情報/Class Information

科目一覧へ戻る 2024/01/18 現在

基本情報/Basic Information

開講科目名
/Class
経営情報システム論特殊研究/Advanced Research in Management Information Systems
授業コード
/Class Code
K000522001
開講キャンパス
/Campus
ポートアイランド
開講所属
/Course
博士/
年度
/Year
2023年度/Academic Year  
開講区分
/Semester
通年/FULL-YEAR
曜日・時限
/Day, Period
木1(前期),木1(後期)/THU1(SPR.),THU1(AUT.)
単位数
/Credits
4.0
主担当教員
/Main Instructor
小川 賢/OGAWA MASARU
遠隔授業
/Remote lecture
No

担当教員情報/Instructor Information

教員名
/Instructor
教員所属名
/Affiliation
小川 賢/OGAWA MASARU 経営学部/Business Administration
授業の方法
/Class Format
講義
授業の目的
/Class Purpose
この講義では、データの取扱に関する倫理、法令、技術について講義する。
様々な活動によって作成される大量のデータをどのように取り扱っていくか、
効率的な取り扱い、イノベーション、経済活性化等様々な目的でデータの活用が重要視されている。
この講義では、データを取り扱ううえで理解しておくべき、倫理、法令、技術について講義を通して基本的な知識を学び、データを扱う上での留意事項について理解を深めることを目的とする。
到 達 目 標
/Class Objectives
データを扱う上で関連する法令について説明できる。
データを扱う上で求められる倫理について説明できる。
データを扱う上で利用される技術について説明できる。
授業のキーワード
/Keywords
授業の進め方
/Method of Instruction
データを扱う上での様々な事例を教材として講義を進める。
履修するにあたって
/Instruction to Students
授業時間外に必要な学修内容・時間
/Required Work and Hours outside of the Class
予習:テキストに目を通しておくこと。必要であれば、統計学のテキストを復習しておくこと。
復習:講義で学修した統計処理、数理計画法を復習し、内容の理解に努めること。
1時間程度の授業時間外が目安である。
提出課題など
/Quiz,Report,etc
成績評価方法・基準
/Grading Method・Criteria
単位認定は授業回数の3分の2以上の出席が前提となる。レポートによって評価する。
テキスト
/Required Texts
必要に応じて指示する。
参考図書
/Reference Books
No.
/Time
主題と位置付け
/Subjects and position in the whole class
学習方法と内容
/Methods and contents
備考
/Notes
1 第1回 ガイダンス 講義の進め方について説明する。
2 データ・AIに関連する法令 データ・AIに関連する法令(個人情報保護法)について理解する。
3 データ・AIに関連する法令 データ・AIに関連する法令(個人情報保護法)について理解する。
4 データ・AIに関連する法令 データ・AIに関連する法令(著作権法)について理解する。 
5 データ・AIに関連する法令 データ・AIに関連する法令(民法)について理解する。  
6 データ・AIに関連する法令 データ・AIに関連する法令(不正競争防止法)について理解する。
7 データ・AIに関連する法令 データ・AIに関連する法令(不正アクセス禁止法)について理解する。
8 データ・AIに関連する法令 データ・AIに関連する法令(GDPR)について理解する。 
9 データを扱う上で求められる倫理 データを扱う上で求められる倫理(ELSI)について理解する。
10 データを扱う上で求められる倫理 データを扱う上で求められる倫理(ELSI)について理解する。
11 データを扱う上で求められる倫理 データバイアスについて理解する。
12 データを扱う上で求められる倫理 アルゴリズムバイアスについて理解する。
13 データを扱う上で利用される技術 データを扱う上で利用される技術(機密性)について理解する。
14 データを扱う上で利用される技術 データを扱う上で利用される技術(完全性)について理解する。
15 データを扱う上で利用される技術 データを扱う上で利用される技術(可用性)について理解する。
16 データを扱う上で利用される技術 データを扱う上で利用される技術(匿名加工情報)について理解する。
17 データを扱う上で利用される技術 データを扱う上で利用される技術(暗号化)について理解する。
18 データを扱う上で利用される技術 データを扱う上で利用される技術(認証)について理解する。
19 データを扱う 匿名加工情報への加工について理解を深める。
20 データを扱う 匿名加工情報への加工について理解を深める。
21 データを扱う 匿名加工情報への加工について理解を深める。
22 データを扱う データを収集する上での留意事項について理解する。
23 データを扱う データを収集する上での留意事項について理解する。
24 データを扱う データを収集する上での留意事項について理解する。
25 データを加工する データを加工する上での留意事項について理解する。
26 データを加工する データを加工する上での留意事項について理解する。
27 データを加工する データを加工する上での留意事項について理解する。
28 データを加工する データを加工する上での留意事項について理解する。
29 まとめ データ・AIを扱う上での留意事項について課題を見つけ考察する。
30 まとめ データ・AIを扱う上での留意事項について学んだ内容をまとめて報告する。

科目一覧へ戻る